Sunday, April 25, 2010

GSM, the ew invention of human being


What is GSM?

GSM (Global System for Mobile communications) is an open, digital cellular technology used for transmitting mobile voice and data services.
GSM is the most popular standard for mobile telephony systems in the world. The GSM Association, its promoting industry trade organization of mobile phone carriers and manufacturers, estimates that 80% of the global mobile market uses the standard. GSM is used by over 3 billion people across more than 212 countries and territories. Its ubiquity enables international roamingarrangements between mobile phone operators, providing subscribers the use of their phones in many parts of the world. GSM differs from its predecessor technologies in that both signaling and speech channels are digital, and thus GSM is considered a second generation (2G) mobile phone system. This also facilitates the wide-spread implementation of data communication applications into the system.

What does GSM offer?

GSM supports voice calls and data transfer speeds of up to 9.6 kbit/s, together with the transmission of SMS (Short Message Service).

GSM operates in the 900MHz and 1.8GHz bands in Europe and the 1.9GHz and 850MHz bands in the US. The 850MHz band is also used for GSM and 3G in Australia, Canada and many South American countries. By having harmonised spectrum across most of the globe, GSM’s international roaming capability allows users to access the same services when travelling abroad as at home. This gives consumers seamless and same number connectivity in more than 218 countries.

Terrestrial GSM networks now cover more than 80% of the world’s population. GSM satellite roaming has also extended service access to areas where terrestrial coverage is not available.



GSM carrier frequencies

GSM networks operate in a number of different carrier frequency ranges (separated into GSM frequency ranges for 2G and UMTS frequency bands for 3G), with most 2G GSM networks operating in the 900 MHz or 1800 MHz bands. Where these bands were already allocated, the 850 MHz and 1900 MHz bands were used instead (for example in Canada and the United States). In rare cases the 400 and 450 MHz frequency bands are assigned in some countries because they were previously used for first-generation systems.
Most 3G GSM EDGE networks in Europe operate in the 2100 MHz frequency band.
Regardless of the frequency selected by an operator, it is divided into timeslots for individual phones to use. This allows eight full-rate or sixteen half-rate speech channels per radio frequency. These eight radio timeslots (or eight burst periods) are grouped into a TDMA frame. Half rate channels use alternate frames in the same timeslot. The channel data rate for all 8 channels is 270.833 kbit/s, and the frame duration is 4.615 ms.
The transmission power in the handset is limited to a maximum of 2 watts in GSM850/900 and 1 watt in GSM1800/1900.

Phone locking


Sometimes mobile phone operators restrict handsets that they sell for use with their own network. This is called locking and is implemented by a software feature of the phone. Because the purchase price of the mobile phone to the consumer is typically subsidised with revenue from subscriptions, operators must recoup this investment before a subscriber terminates service. A subscriber may usually contact the provider to remove the lock for a fee, utilize private services to remove the lock, or make use of free or fee-based software and websites to unlock the handset themselves.
In some territories (e.g., Bangladesh, Hong Kong, Pakistan, India) all phones are sold unlocked. In others (e.g., Belgium, Finland) it is unlawful for operators to offer any form of subsidy on a phone's price.




GSM service security

GSM was designed with a moderate level of service security. The system was designed to authenticate the subscriber using a pre-shared key and challenge-response. Communications between the subscriber and the base station can be encrypted. The development of UMTS introduces an optional Universal Subscriber Identity Module (USIM), that uses a longer authentication key to give greater security, as well as mutually authenticating the network and the user - whereas GSM only authenticates the user to the network (and not vice versa). The security model therefore offers confidentiality and authentication, but limited authorization capabilities, and no non-repudiation.
GSM uses several cryptographic algorithms for security. The A5/1 and A5/2 stream ciphers are used for ensuring over-the-air voice privacy. A5/1 was developed first and is a stronger algorithm used within Europe and the United States; A5/2 is weaker and used in other countries. Serious weaknesses have been found in both algorithms: it is possible to break A5/2 in real-time with a ciphertext-only attack, and in February 2008, Pico Computing, Inc revealed its ability and plans to commercialize FPGAs that allow A5/1 to be broken with a rainbow table attack. The system supports multiple algorithms so operators may replace that cipher with a stronger one.
On 28 December 2009 German computer engineer Karsten Nohl announced that he had cracked the A5/1 cipher. According to Nohl, he developed a number of rainbow tables (static values which reduce the time needed to carry out an attack) and have found new sources for known plaintext attacks. He also said that it is possible to build "a full GSM interceptor ... from open source components" but that they had not done so because of legal concerns.
In 2010, threatpost.com reported that "A group of cryptographers has developed a new attack that has broken Kasumi, the encryption algorithm used to secure traffic on 3G GSM wireless networks. The technique enables them to recover a full key by using a tactic known as a related-key attack, but experts say it is not the end of the world for Kasumi." Kasumi is the name for the A5/3 algorithm, used to secure most 3G GSM EDGE traffic.
Although security issues remain for GSM newer standards and algorithms may address this. New attacks are growing in the wild which take advantage of poor security implementations, architecture and development for smart phone applications. Some wiretapping and eavesdropping techniques hijack the audio input and output providing an opportunity for a 3rd party to listen in to the conversation. Although this threat is mitigated by the fact the attack has to come in the form of a Trojan, malware or a virus and might be detected by security software.


EDGE

Enhanced Data rates for GSM Evolution (EDGE) (also known as Enhanced GPRS (EGPRS), or IMT Single Carrier (IMT-SC), or Enhanced Data rates for Global Evolution) is a backward-compatible digital mobile phone technology that allows improved data transmission rates, as an extension on top of standard GSM. EDGE is considered a 3G radio technology and is part of ITU's 3G definition. EDGE was deployed on GSM networks beginning in 2003— initially by Cingular (now AT&T) in the United States.
EDGE is standardized by 3GPP as part of the GSM family, and it is an upgrade that provides more than three-fold increase in both the capacity and performance of GSM/GPRS networks. It does this by introducing sophisticated methods of coding and transmitting data, delivering higher bit-rates per radio channel.
EDGE can be used for any packet switched application, such as an Internet connection. EDGE-delivered data services create a broadband internet-like experience for the mobile phone user. High bandwidth data applications such as video services and other multimedia benefit from EGPRS' increased data capacity.
Evolved EDGE continues in Release 7 of the 3GPP standard providing reduced latency and more than doubled performance e.g. to complement High-Speed Packet Access (HSPA). Peak bit-rates of up to 1Mbit/s and typical bit-rates of 400kbit/s can be expected.

No comments:

Post a Comment